Emerging Geohazards Laboratory

Welcome to the website for the Emerging Geohazards laboratory !

Who are we?

At the Emerging Geohazards Lab, our primary interest lies in the study of the micro-mechanisms underlying ground hazards. We study their early formation and evolution, aiming to develop less intrusive mitigation strategies. To achieve this, we employ a new generation of methods, models, and materials that are citizen-centric, highly tailored, and nature-inspired. To this end, we share a common interest in biomimicry.

What’s new?

The 3rd Nature Inspired Solutions for the Built Environment (NiSE2) conference is scheduled to take place in September 2023 in Cyprus.

Web: https://nce2022.ktimo.org/Home

Mail: nce2022@ktimo.org

As of last year, and as Chair for NiSE, talks will be centred around three themes :

Theme 1 – 3Ms: Nature-inspired Materials, Methods and Models
Theme 2 – Biomechanics, technologies, and implementation
Theme 3 – Risks, management and governance

Why does what we do matter? 

A growing number of people now reside in areas prone to various hazards, such as flood zones, riverbanks, brownfield sites, and abandoned mine lands. People also inhabit precarious coastal areas with liquefiable sands and soft clays, near active volcanoes, and regions susceptible to major earthquakes. These diverse ground conditions create interconnected risks that can trigger cascading disasters. The climate emergency and inadequate ground management have given rise to further issues. These emerging challenges often defy our ability to predict when and where they will occur.

How can you work with us?

Our laboratories are located across different regions of London, including West, Central, North, and East London. Additionally, we have established partnerships with universities in South Africa, Taiwan, Bangladesh, Malaysia, and Australia. Our research activities are organized into four primary work streams. If you have an interest in any of these areas and are considering joining us as a sabbatical researcher, pursuing a PhD, or collaborating with our team, please do not hesitate to get in touch. We would be delighted to make arrangements to welcome you to one of our laboratory facilities.

What are we studying?

Work Stream 1. Cause: The risk of non-authigentic polymorphs

Whilst the ground engineering practice has a fair understanding of classic ground hazards, it is confused by the emergence of a new strain of problems in grounds, at times and locations that their occurrence is generally unlikely. Among many influencing factors, we have identified anthropogenic alterations to the total environment (atmosphere, biosphere, lithosphere) as ‘new’ drivers. These are the consequence of urban sprawl, and degradation of ground natural functions (i.e. ecosystem service provision) with ubiquitous footprints in soil packing quality, fatigue and formation of non-authigenic polymorphs of cementitious minerals, all causing uncertainty, anomalies and abnormal spatial variability of soil properties. Here, the emphasis is on modern-day challenges. We argue that whilst the identity of many young non-authigentic mineral polymorphs and their association with geohazards may be known, in many cases, their function in todays’ dynamic total environment remains obscure. New knowledge is achieved predominantly through physical modelling, advanced micro-analytical measurement and micro-to-macro approach with emphasis on fatigue, static flow and anisotropic behaviour of natural, engineered and reinforced soils within the tenets of our recently developed structure-based soil model that is exclusively written for young sediments.

Within this theme and in bullet points, we have interest in:

  • Young re-precipitated carbonates, their shape, structure and hydromechanical behaviour
  • Concept of double porosity
  • Structure-based behaviour of soils
  • Ageing & fatigue
  • Mineral dissolution
  • Loessification
  • Environmental controls on particle-level events

Work stream 2. Mechanisms: New tools to decode the hazard mechanisms

At the heart of what we do sits identification of mechanisms of abrupt ground movements in young and heavily disturbed soils, and also secondary hazards that follow, including anthropogenic aerosols and dust flux, carbon sequestration, mineralisation and metastability of young cementitious minerals; with recent emphasis on fatigue, static flow and anisotropic undrained behaviour in young deposits, that plague the built environment. We have developed and deployed a suite of soft tools, hard tools and micro-prototyping methods (to simulate the natural earth processes). Our tools enable us to re-generate the earth processes at laboratory scale and assist us to better understand the characteristics of shallow soils, to physically simulate the new total environments, and to re-conceptualise the fundamental soil mechanics principles to explain some of the soil abnormal behaviours. We use,

  • Molecular modelling
  • Discrete Element modelling
  • Probabilistic frameworks (some, linked with FEM)
  • Advanced geotechnical testing
  • 3D printing

Work stream 3. Solutions: New soft and hard preventive and corrective technologies

We use in-house developed soil models to offer an explanation to systematic stress-strain anomalies in some unsaturated, open-packed bi-modal soils. In the past two years, our in-house constitutive model has been successfully refined and adapted to a range of soils (and peat) reinforced with a new generation of fibres, binders and fillers. These include a range of Biogenic (e.g. decayed plant rootlets), Inorganic (including an amalgam of polybutadiene, polyisoperne, elastomers and styrene-butadiene), Organic (e.g. food production wastes), Pseudo-biogenic (we call these Anthroportācarbs), and Virgin mineral matters, many of which are available, naturally, in shallow grounds. In this, we share interest with workers studying natural inspired self-healing technologies.

The new fibres are courteous to the soil health and ecosystem service functions and can be deployed as ‘tailored-for-problem’ alternative additives to ‘unlock’ the potentials of natural problematic grounds. The overarching vision is developing and deploying new technologies, to revitalise and restore the symbiosis between natural systems and engineering interventions, and to ensure interventions are adaptable to emerging environments. In short, our interest within this theme of works include:

  • Nature-inspired ground engineering materials and methods
  • Decision support systems
  • Stochastic models to deal with uncertain ground data
  • Natural and recycled fibres for soil stabilisation
  • Earth-based construction materials
  • Structure-based soil models
  • Constitutive models for bimodal soils

Work stream 4. Reach and Change: Bottom-up change of perception

We adopt a citizen-centric dissemination strategy to enhance global preparedness and response. In addition to standard dissemination, we deliver international endorsed CPD workshops (SAICE, ICE accredited across a number of UK and South African universities), and end-user direct engagement. In the latter case, to capture and record the personal experience of and response to emerging geo-hazards, a combination of open discussion, physical modelling demonstration and drawing is adopted as the communication vehicle: To guarantee the governance and effective implementation of policies, we bring in the human experience of events into the design of next-generation remedial engineering measures as a vehicle for co-producing the shared knowledge. In this and via a radically new pedagogical strategy, a platform is launched for people across Free State South Africa and South East England to share their personal experience of modern ground hazards that have affected their lives through a suite of instruments including song, picture drawing and storytelling.